
Security Assessment

ParaSpace - NFT Money
Market
CertiK Verified on Oct 25th, 2022

Executive Summary

Vulnerability Summary

2 Critical 2 Resolved

Critical risks are those that impact the safe functioning

of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

2 Major 1 Resolved, 1 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

4 Medium 3 Resolved, 1 Partially Resolved
Medium risks may not pose a direct risk to users’

funds, but they can affect the overall functioning of a

platform.

11 Minor 7 Resolved, 1 Partially Resolved, 3 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient

than other solutions.

3 Informational 1 Resolved, 2 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to

fall within industry best practices. They usually do not

affect the overall functioning of the code.

SUMMARY PARASPACE - NFT MONEY MARKET

CertiK Verified on Oct 25th, 2022

ParaSpace - NFT Money Market

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Lending, NFT

ECOSYSTEM

BSC

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 10/25/2022

KEY COMPONENTS

N/A

CODEBASE
https://github.com/para-space/paraspace-core

...View All

COMMITS
aec6ed0ddda43ad3cfbd359c9ffd0d82f45ed6d7

...View All

22
Total Findings

14
Resolved

0
Mitigated

2
Partially Resolved

6
Acknowledged

0
Declined

0
Unresolved

https://github.com/para-space/paraspace-core

TABLE OF CONTENTS PARASPACE - NFT MONEY MARKET

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

ParaSpace-01 : Third Party Dependencies

GLB-01 : Potential Incorrect Price Risk

MLB-01 : Potential Financial Loss

NTB-01 : `NToken.permit()` doesn't check the token owner

NTH-01 : Unchecked ERC-20 `transfer()`/`transferFrom()` Call

NTU-01 : Incompatibility with Deflationary Tokens

NTU-02 : Incorrect Conditional Statement

PCB-01 : Lack of reasonable boundary

POL-01 : Functions Not Restricted

POL-02 : Lack of Account Validation

POO-01 : Potential Flashloan Attack

POO-02 : Potential Reentrancy Attack

PRO-01 : Centralization Related Risks

PRO-02 : Unused Return Value

PRO-03 : `initialize()` Is Unprotected

PRT-01 : Check-Effects-Interact Pattern Not Implemented

SLB-01 : Redundant `else` Clause

TOK-01 : Missing Zero Address Validation

VLB-01 : Redundant Code

ParaSpace-02 : Potential risks of pool establishment

POO-03 : Discussion On Borrow With Credit

PRO-05 : Incorrect Comments

Optimizations

PRO-04 : Unused State Variable

TABLE OF CONTENTS PARASPACE - NFT MONEY MARKET

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS PARASPACE - NFT MONEY MARKET

CODEBASE PARASPACE - NFT MONEY MARKET

Repository

https://github.com/para-space/paraspace-core

Commit

aec6ed0ddda43ad3cfbd359c9ffd0d82f45ed6d7

CODEBASE PARASPACE - NFT MONEY MARKET

https://github.com/para-space/paraspace-core

AUDIT SCOPE PARASPACE - NFT MONEY MARKET

30 files audited 13 files with Acknowledged findings 17 files without findings

ID File SHA256 Checksum

ACL
contracts/protocol/configuration/ACLManager.s

ol

95cef06ac33289cadab6d5793999801cd026a2ff44d

a116f9fa03d21417e28a7

PAP
contracts/protocol/configuration/PoolAddresse

sProvider.sol

9450d6851d1f24115c05704dfc28e9581720161373

951bb85e3276d6f24656fd

PAR
contracts/protocol/configuration/PoolAddresse

sProviderRegistry.sol

267f4dc860bd1c09577abec389e4689fd09f62c8f8a

7f89001c21bdaf7d61ee5

POS
contracts/protocol/configuration/PriceOracleSe

ntinel.sol

c00b70381a6300be6c5df7d6c9d83cbe0708bc8390

71b16234d1fc638d7d6b29

RCB
contracts/protocol/libraries/configuration/Reser

veConfiguration.sol

aaed53612178e091e8bffad3dfa97a74dbe15006c5

87db5bcd29961ba7b24b5a

BLB
contracts/protocol/libraries/logic/BorrowLogic.s

ol

003c34b961155cc4e8a9cd068441dfa10c7da3a971

c7f8f29aacef8cd25c97f0

LLB
contracts/protocol/libraries/logic/LiquidationLog

ic.sol

3e8486b0660831aa75c34206921c71544bd70ea9c

06adfd41df2253687951af9

MLB
contracts/protocol/libraries/logic/MarketplaceL

ogic.sol

c693104f7cae331d7ff314980f7d005ba2fa0eb4738

a8f05619e2037dc663af9

POO contracts/protocol/pool/Pool.sol
3807c300c1e494c0a0d985f2055f9ef96722dcd7d0d

740abac209c95100dc828

PCB contracts/protocol/pool/PoolConfigurator.sol
9cbb57a2f63c9466b02f6e1ab622274e8207910ffd6

9c11cb13c744c6f7275e5

MIE
contracts/protocol/tokenization/base/MintableI

ncentivizedERC721.sol

f28e7c94e4402a959239b08c6a4701b022ab5075e

cacbba1343067dfc46accb0

NTB contracts/protocol/tokenization/NToken.sol
746b6de828f7c5cb8b3151da30cdb9b34630737e5

e0b375e50177b0aab1a84a6

NTU
contracts/protocol/tokenization/NTokenUniswa

pV3.sol

ec607ab384bd7bd4b5c16d34f67c58aab4911dc8af

dba14d458addf26f4b3e1c

AUDIT SCOPE PARASPACE - NFT MONEY MARKET

ID File SHA256 Checksum

UCB
contracts/protocol/libraries/configuration/UserC

onfiguration.sol

86aaf1f476e75a6bc50a08347335c979216a7ff3645

045529141227eb083943e

ERR contracts/protocol/libraries/helpers/Errors.sol
a742573fa626a858b7829c1476f0079df6367c31bb

0e75c3c8bc6682ac6950b2

CLB
contracts/protocol/libraries/logic/ConfiguratorL

ogic.sol

68a6df4db00045eb06e97c03ef7c85d708a6f89be0

620a8e428ed06bbaf221ab

GLB
contracts/protocol/libraries/logic/GenericLogic.

sol

d925aae0a3678752b6c1ae8f5b64792dc44d6710d

e955b3ecf16ded62e7958cb

PLB contracts/protocol/libraries/logic/PoolLogic.sol
fbc0fa3c120e1139743c7ce837dfab052d1c806b9fc

d683b39bb843def0f2df9

RLB
contracts/protocol/libraries/logic/ReserveLogic.

sol

703723bcc77a89ef2f119f3be60a61b2b6c02650be

40dce1283ec14a7b4b82d6

SLB
contracts/protocol/libraries/logic/SupplyLogic.s

ol

bb14d9108627998edb59cef3468329c79a10734faf

459d4e107c7d90b48e7a16

VLB
contracts/protocol/libraries/logic/ValidationLogi

c.sol

229d1f71713b051ca70d6fc24436095280b64325d0

bb6c404673a5d168cc6faa

MUB contracts/protocol/libraries/math/MathUtils.sol
d30ce03102a94e569418949d72632e1dc9cab8913

812c3ae9943e6c8843f0d36

PMB
contracts/protocol/libraries/math/PercentageM

ath.sol

7fe9afd04a2494c9c257ab118ceceb27325b457651

a14b5c0061ebd83bcb8fc6

WRM
contracts/protocol/libraries/math/WadRayMath.

sol

b9009088a40469b39b5dca345c2da9d861a5f5cd8

18724aed7566ba6085c17d9

CIT
contracts/protocol/libraries/types/ConfiguratorI

nputTypes.sol

cce746f852074294e3640e89f8561164e969eda2fcc

ecd85c4560a64fe36de1a

DTB
contracts/protocol/libraries/types/DataTypes.so

l

6e891e3ee4dc4b0f5a4bf747dce5c34096517539fac

e1ed24992151be98348f9

PSB contracts/protocol/pool/PoolStorage.sol
2dfb1735a4e8ca9d81e8a7fce2af4a9dd8de88c40a

495706af9f26b516873455

DRI
contracts/protocol/pool/DefaultReserveInterest

RateStrategy.sol

a01e7cab83a7ffcda8237ca31caca0b629c315a32fd

de1359d2cb455ea2e0819

AUDIT SCOPE PARASPACE - NFT MONEY MARKET

ID File SHA256 Checksum

SBT
contracts/protocol/tokenization/base/ScaledBal

anceTokenBaseERC721.sol

7eb6417815fcca7cdde5e6991d26aa61b498c5a462

054719f3cd7f6428769ce0

NTM
contracts/protocol/tokenization/NTokenMoonBi

rds.sol

c8e983646c3ab6ad73739d6b6f20214113ba25494

66d5aed63ab986c67e1f76c

AUDIT SCOPE PARASPACE - NFT MONEY MARKET

APPROACH & METHODS PARASPACE - NFT MONEY MARKET

This report has been prepared for ParaSpace to discover issues and vulnerabilities in the source code of the ParaSpace -

NFT Money Market project as well as any contract dependencies that were not part of an officially recognized library. A

comprehensive examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices.
We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS PARASPACE - NFT MONEY MARKET

FINDINGS PARASPACE - NFT MONEY MARKET

This report has been prepared to discover issues and vulnerabilities for ParaSpace - NFT Money Market. Through this audit,

we have uncovered 22 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static

Analysis to complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

ParaSpace-01 Third Party Dependencies Volatile Code Minor Acknowledged

GLB-01 Potential Incorrect Price Risk Volatile Code Minor Resolved

MLB-01 Potential Financial Loss Logical Issue Medium Resolved

NTB-01
NToken.permit() Doesn't Check

The Token Owner
Logical Issue Critical Resolved

NTH-01
Unchecked ERC-20 transfer() /

transferFrom() Call
Volatile Code Minor Resolved

NTU-01
Incompatibility With Deflationary

Tokens
Logical Issue Medium Resolved

NTU-02 Incorrect Conditional Statement Logical Issue Minor Resolved

PCB-01 Lack Of Reasonable Boundary Volatile Code Minor Partially Resolved

POL-01 Functions Not Restricted Logical Issue Medium Resolved

POL-02 Lack Of Account Validation Logical Issue Minor Resolved

FINDINGS PARASPACE - NFT MONEY MARKET

22
Total Findings

2
Critical

2
Major

4
Medium

11
Minor

3
Informational

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664432483840
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663645676223
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663644826454
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1666665206954
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663002835025
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664419190669
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664258992174
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664440612438
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663644739815
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663644461268

ID Title Category Severity Status

POO-01 Potential Flashloan Attack Logical Issue Critical Resolved

POO-02 Potential Reentrancy Attack Logical Issue Major Resolved

PRO-01 Centralization Related Risks
Centralization /

Privilege
Major Acknowledged

PRO-02 Unused Return Value Volatile Code Minor Acknowledged

PRO-03 initialize() Is Unprotected Volatile Code Minor Acknowledged

PRT-01
Check-Effects-Interact Pattern Not

Implemented
Volatile Code Medium Partially Resolved

SLB-01 Redundant else Clause Logical Issue Minor Resolved

TOK-01 Missing Zero Address Validation Volatile Code Minor Resolved

VLB-01 Redundant Code Volatile Code Minor Resolved

ParaSpace-02
Potential Risks Of Pool

Establishment
Control Flow Informational Acknowledged

POO-03 Discussion On Borrow With Credit Control Flow Informational Resolved

PRO-05 Incorrect Comments Inconsistency Informational Acknowledged

FINDINGS PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664262844461
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664257966228
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664435078586
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664429488372
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664432757265
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663002835020
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663644568267
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664433727596
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663644583464
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663645243658
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664261417699
https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663702467316

PARASPACE-01 THIRD PARTY DEPENDENCIES

Category Severity Location Status

Volatile Code Minor Acknowledged

Description

The contract is serving as the underlying entity to interact with third-party UniswapV3 , OpenSea , X2Y2 , MoonBird ，and

NFT Oracle protocols. The scope of the audit treats 3rd party entities as black boxes and assumes their functional

correctness. However, in the real world, 3rd parties can be compromised and this may lead to lost or stolen assets. In

addition, upgrades of 3rd parties can possibly create severe impacts, such as increasing fees of 3rd parties, migrating to new

LP pools, etc.

The ParaSpace protocol allows users to borrow assets using NFT as collateral. If NFT prices fluctuate significantly in the

third-party markets, the Supplier's health factory may fluctuate as well. This is a potential risk to this protocol and to the

Supplier.

Recommendation

We understand that the business logic of ParaSpace requires interaction with uniswapV3 , openSea , etc. We encourage

the team to constantly monitor the statuses of 3rd parties to mitigate the side effects when unexpected activities are

observed.

Alleviation

[ParaSpace] : No action needed, we consider it to be safe.

PARASPACE-01 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664432483840

GLB-01 POTENTIAL INCORRECT PRICE RISK

Category Severity Location Status

Volatile Code Minor contracts/protocol/libraries/logic/GenericLogic.sol (base): 356~360 Resolved

Description

GenericLogic.sol contract _getUserBalanceInBaseCurrency() method

uint256 assetPrice;

......

if (INToken(xTokenAddress).getAtomicPricingConfig()) {

 uint256 totalBalance = INToken(xTokenAddress).balanceOf(user);

 for (uint256 index = 0; index < totalBalance; index++) {

 uint256 tokenId = IERC721Enumerable(xTokenAddress)

 .tokenOfOwnerByIndex(user, index);

 if (

 ICollaterizableERC721(xTokenAddress).isUsedAsCollateral(

 tokenId

)

) {

 // TODO use getTokensPrices instead if it saves gas

 assetPrice = IPriceOracleGetter(oracle).getTokenPrice(

 currentReserveAddress,

 tokenId

);

 balance += assetPrice;

 }

 }

}

......

unchecked {

 return (balance / assetUnit, assetPrice);

}

According to the above statement, the method _getUserBalanceInBaseCurrency() will return the assetPrice of the last

item.

And referring to the client's technical documentation, atomic pricing is defined as:

GLB-01 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663645676223

the first notable difference between typical floor-based and UniV3 is that each token has a different price based on the

ERC20 token composition inside the LP token. This means that each UniV3 token has a different price, and in the statement

logic, the local variable assetPrice will be overwritten by the value of the last item in the loop.

We understand that for NFT assets, the user cannot borrow them now. However, the result returned by this method is

incorrect and might not make sense.

Recommendation

We recommend the client to make sure that the code here can match the design intent.

Alleviation

The ParaSpace team resolved this issue in commit aec6ed0ddda43ad3cfbd359c9ffd0d82f45ed6d7 .

GLB-01 PARASPACE - NFT MONEY MARKET

https://github.com/para-space/paraspace-core/blob/aec6ed0ddda43ad3cfbd359c9ffd0d82f45ed6d7/contracts/protocol/libraries/logic/GenericLogic.sol#L501-L522

MLB-01 POTENTIAL FINANCIAL LOSS

Category Severity Location Status

Logical

Issue
Medium

contracts/protocol/libraries/logic/MarketplaceLogic.sol (base): 279~29

1
Resolved

Description

279 if (reserve.xTokenAddress == address(0)) {

280 address underlyingAsset = INToken(token)

281 .UNDERLYING_ASSET_ADDRESS();

282 reserve = reservesData[underlyingAsset];

283 bool isNToken = reserve.xTokenAddress == token;

284

285 require(isNToken, Errors.ASSET_NOT_LISTED);

286 if (!userConfig.isUsingAsCollateral(reserve.id)) {

287 userConfig.setUsingAsCollateral(reserve.id, true);

288 }

289 // No need to supply anymore because it's already NToken

290 continue;

291 }

According to the if condition reserve.xTokenAddress == address(0) of the above statement from method _repay() ,

this means that the purchased token is an NToken . However, this token will be locked in the pool of the contract forever.

This may be incorrect.

Recommendation

We recommend the client ensuring the logical correctness.

Alleviation

ParaSpace modified the related code in commit 5139c7bc36884b7337eb48dc2e39372f6688786b , the protocol will always

use pool as NFT purchase recipient.

MLB-01 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663644826454
https://github.com/para-space/paraspace-core/commit/5139c7bc36884b7337eb48dc2e39372f6688786b

NTB-01 NToken.permit() DOESN'T CHECK THE TOKEN OWNER

Category Severity Location Status

Logical Issue Critical contracts/protocol/tokenization/NToken.sol: 288~291 Resolved

Description

286 require(owner == ecrecover(digest, v, r, s), Errors.INVALID_SIGNATURE);

287 _nonces[owner] = currentValidNonce + 1;

288 _approve(spender, value);

NToken.permit() allows the spender to transfer in the future the token with id value if correctly signed by owner

message provided. However, it is not checked that _isApprovedOrOwner(owner, value) . As a result, anyone can get

approval for any token.

The value argument name is misleading.

Recommendation

We recommend

1. Rename the value argument to tokenId .

2. Omitting the owner argument. Setting address owner = ownerOf(tokenId) .

3. Checking require(signer == owner || isApprovedForAll(owner, signer)) .

4. Renaming the PERMIT_TYPEHASH and changing it correspondingly.

Alleviation

ParaSpace team removed the permit() function in commit 636e92a9d5d2b5a4cc659e1b1e0c5942b84ee7e6

NTB-01 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1666665206954
https://github.com/para-space/paraspace-core/commit/636e92a9d5d2b5a4cc659e1b1e0c5942b84ee7e6

NTH-01 UNCHECKED ERC-20 transfer() / transferFrom() CALL

Category Severity Location Status

Volatile Code Minor contracts/protocol/tokenization/NToken.sol (base): 155 Resolved

Description

The return value of the transfer()/transferFrom() call is not checked.

155 IERC20(token).transfer(to, amount);

Recommendation

Since some ERC-20 tokens return no values and others return a bool value, they should be handled with care. We advise

using the OpenZeppelin's SafeERC20.sol implementation to interact with the transfer() and transferFrom()

functions of external ERC-20 tokens. The OpenZeppelin implementation checks for the existence of a return value and

reverts if false is returned, making it compatible with all ERC-20 token implementations.

Alleviation

The team heeded our advice and resolved this issue in commit 636e92a9d5d2b5a4cc659e1b1e0c5942b84ee7e6 .

NTH-01 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663002835025
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/SafeERC20.sol

NTU-01 INCOMPATIBILITY WITH DEFLATIONARY TOKENS

Category Severity Location Status

Logical

Issue
Medium

contracts/protocol/tokenization/NTokenUniswapV3.sol: 200, 203, 229, 2

34, 264~270
Resolved

Description

When transferring deflationary ERC20 tokens, the input amount may not be equal to the received amount due to the charged

transaction fee. For example, if a user sends 100 deflationary tokens (with a 10% transaction fee), only 90 tokens actually

arrived at the contract. However, a failure to discount such fees may allow the same user to withdraw 100 tokens from the

contract, which causes the contract to lose 10 tokens in such a transaction.

Reference:
https://thoreum-finance.medium.com/what-exploit-happened-today-for-gocerberus-and-garuda-also-for-lokum-

ybear-piggy-caramelswap-3943ee23a39f

200 IERC20(token0).safeTransferFrom(sender, address(this), amountAdd0);

Transferring tokens by amountAdd0 .

228 uint256 refund0 = amountAdd0 - amount0;

The amountAdd0 appears to be used for bookkeeping purposes without compensating the potential transfer fees.

203 IERC20(token1).safeTransferFrom(sender, address(this), amountAdd1);

Transferring tokens by amountAdd1 .

233 uint256 refund1 = amountAdd1 - amount1;

The amountAdd1 appears to be used for bookkeeping purposes without compensating the potential transfer fees.

NTU-01 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664419190669
https://thoreum-finance.medium.com/what-exploit-happened-today-for-gocerberus-and-garuda-also-for-lokum-ybear-piggy-caramelswap-3943ee23a39f

264 _increaseLiquidityCurrentRange(

265 tokenId,

266 amountAdd0,

267 amountAdd1,

268 amount0Min,

269 amount1Min

270);

Transferring tokens by amountAdd0 .

This function call executes the following operation.

In NTokenUniswapV3._increaseLiquidityCurrentRange ,

IERC20(token0).safeTransferFrom(sender, address(this), amountAdd0);

264 _increaseLiquidityCurrentRange(

265 tokenId,

266 amountAdd0,

267 amountAdd1,

268 amount0Min,

269 amount1Min

270);

This function call executes the following operation.

In NTokenUniswapV3._increaseLiquidityCurrentRange ,

uint256 refund0 = amountAdd0 - amount0;

The amountAdd0 appears to be used for bookkeeping purposes without compensating the potential transfer fees.

Recommendation

We advise the client to regulate the set of tokens supported and add necessary mitigation mechanisms to keep track of

accurate balances if there is a need to support deflationary tokens.

Alleviation

The client removed this code in commit 9be10233cd58c73e48df45f3f91538ee72885c6f.

NTU-01 PARASPACE - NFT MONEY MARKET

https://github.com/para-space/paraspace-core/commit/9be10233cd58c73e48df45f3f91538ee72885c6f

NTU-02 INCORRECT CONDITIONAL STATEMENT

Category Severity Location Status

Logical Issue Minor contracts/protocol/tokenization/NTokenUniswapV3.sol: 49~51 Resolved

Description

Referring to the comments, the logic may occur in a normal supplyERC721 pool transaction. However, when the operator is

POOL the transaction will be reverted. That means the UniswapV3 tokens cannot be supplied in this protocol.

47 // if the operator is the pool, this means that the pool is transferring the

token to this contract

48 // which can happen during a normal supplyERC721 pool tx

49 if (operator == address(POOL)) {

50 revert(Errors.OPERATION_NOT_SUPPORTED);

51 }

Recommendation

We recommend reviewing the logic to ensure it meets the design intent.

Alleviation

[ParaSpace] : Yes, it's expected because for Moonbirds & Uniswap , users will need to transfer to NToken then

NToken will supply for them. And UniswapV3Gateway does the POOL.supplyERC721FromNToken step.

UniswapV3Gateway.sol

NTU-02 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664258992174

42 function supplyUniswapV3(

43 address pool,

44 DataTypes.ERC721SupplyParams[] calldata tokenIds,

45 address onBehalfOf

46) external {

47 for (uint256 index = 0; index < tokenIds.length; index++) {

48 IERC721(UNISWAP_V3_POSITION_MANAGER).safeTransferFrom(

49 msg.sender,

50 address(

51 POOL

52 .getReserveData(UNISWAP_V3_POSITION_MANAGER)

53 .xTokenAddress

54),

55 tokenIds[index].tokenId

56);

57 }

58

59 POOL.supplyERC721FromNToken(

60 UNISWAP_V3_POSITION_MANAGER,

61 tokenIds,

62 onBehalfOf

63);

64 }

NTU-02 PARASPACE - NFT MONEY MARKET

PCB-01 LACK OF REASONABLE BOUNDARY

Category Severity Location Status

Volatile

Code
Minor

contracts/protocol/pool/PoolConfigurator.sol: 195, 274, 313, 327

~337, 341
Partially Resolved

Description

The variables auctionRecoveryHealthFactor , newReserveFactor , newBorrowCap , and newFee do not have

reasonable boundaries, so they can be given arbitrary values after deploying.

Recommendation

We recommend adding reasonable upper and lower boundaries to all the configuration variables.

Alleviation

The team heeded our advice and added a validation to the auction recovery health factor in commit

355402a64a9c857d9c13b46d16bf813a3186fd56 .

PCB-01 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664440612438

POL-01 FUNCTIONS NOT RESTRICTED

Category Severity Location Status

Logical Issue Medium contracts/protocol/pool/Pool.sol (base): 358, 393 Resolved

Description

1 function batchBuyWithCredit(

2 bytes32[] calldata marketplaceIds,

3 bytes[] calldata payloads,

4 DataTypes.Credit[] calldata credits,

5 address onBehalfOf,

6 uint16 referralCode

7) external payable virtual override nonReentrant {

function buyWithCredit(

 bytes32 marketplaceId,

 bytes calldata payload,

 DataTypes.Credit calldata credit,

 address onBehalfOf,

 uint16 referralCode

) external payable virtual override nonReentrant {

Both of the buyWithCredit() and batchBuyWithCredit() are external functions without any validation. Any user can call

them with any parameter. At the same time, these functions do not validate the caller's allowance from the onBehalfOf

account. Not verifying that the caller has allowance from the onBehalfOf account could be a vulnerability.

Recommendation

Given the significant risk associated with these two methods, we recommended verifying order signatures and credit

signatures.

Alleviation

[ParaSpace] : To address this issue, we will remove onBahalfOf parameter and remove buyWithCredit call from

WETHGateway . In this case, we allow only a user to buy NFT using their own credit. The related pull request is #71.

POL-01 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663644739815
https://github.com/para-space/paraspace-core/pull/71/files

POL-02 LACK OF ACCOUNT VALIDATION

Category Severity Location Status

Logical Issue Minor contracts/protocol/pool/Pool.sol (base): 149 Resolved

Description

149 function supplyERC721FromNToken(

150 address asset,

151 DataTypes.ERC721SupplyParams[] calldata tokenData,

152 address onBehalfOf

153) external virtual override nonReentrant {

154 SupplyLogic.executeSupplyERC721FromNToken(

155 _reserves,

156 _usersConfig[onBehalfOf],

157 DataTypes.ExecuteSupplyERC721Params({

158 asset: asset,

159 tokenData: tokenData,

160 onBehalfOf: onBehalfOf,

161 actualSpender: address(0),

162 referralCode: 0

163 })

164);

165 }

In the function Pool.supplyERC721FromNToken() , any user can call it to supply ERC721 from other accounts without

restriction.

Recommendation

We recommend adding checks to ensure that only the NToken contract is allowed to call this function.

Alleviation

The team heeded our advice and resolved this issue in commit 204812009a0240b5ce41c96067e5c4fdaaa03774 .

POL-02 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663644461268

POO-01 POTENTIAL FLASHLOAN ATTACK

Category Severity Location Status

Logical Issue Critical contracts/protocol/pool/Pool.sol: 292~293 Resolved

Description

The following check is performed when borrowing if the interest rate mode is stable:

 require(

 !params.userConfig.isUsingAsCollateral(

 reservesData[params.asset].id

) ||

 params.reserveCache.reserveConfiguration.getLtv() == 0 ||

 params.amount >

 IToken(params.reserveCache.xTokenAddress).balanceOf(

 params.userAddress

),

 Errors.COLLATERAL_SAME_AS_BORROWING_CURRENCY

);

So the current attack only applies if the interest rate mode is variable. The following slightly tweaked attack works in either

interest rate mode.

Attack Flow:

1. An exploiter creates two contracts A and B.

2. Contract A flash loans 100 ETH from other protocols, it then supplies 100 ETH and is minted 100 ETH of PToken

(assuming the asset is ETH), they then borrow 80% of the locked ETH in some other Token. (assuming up to 80%

can be borrowed).

3. Contract A transfers the borrowed Token's to Contract B, which then swaps them for around 80 ETH.

4. Contract B then supplies 80 ETH and is minted 80 ETH worth of PToken. Subsequently, they borrow 64 ETH worth

of some other Token, which they then swap for around 64 ETH.

5. Contract B uses its own 80 ETH worth of PToken to pay off Contract A's debt.

6. Contract A withdraws all 100 ETH supplied by burning its 100 ETH of PToken, as its debt is now cleared.

7. Contract A repays the 100 ETH flash loan.

8. The exploiter gains around 64 ETH in profit as they still have the 64 ETH in contract B. (Not accounting for the swap

and flash loan fees.)

Recommendation

POO-01 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664262844461

We recommend only allowing the msg.sender to repay their own debts using PToken.

Alleviation

The team heeded the recommendation and resolved the finding in commit

b0666aa533fa470adacdb24094c2583c04adf7be005f68fe7dc37c707bea50ab

POO-01 PARASPACE - NFT MONEY MARKET

https://github.com/para-space/paraspace-core/pull/51/files#diff-b0666aa533fa470adacdb24094c2583c04adf7be005f68fe7dc37c707bea50ab

POO-02 POTENTIAL REENTRANCY ATTACK

Category Severity Location Status

Logical

Issue
Major

contracts/protocol/pool/Pool.sol: 527~531, 571~578, 598~602, 618~62

2
Resolved

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another untrusted contract

before resolving any effects.

If the attacker can control the untrusted contract, they can make a recursive call back to the original function, repeating

interactions that would have otherwise not run after the external call resolved the effects.

For example, the hacker can call the withdrawERC721() method and use the hook _checkOnERC721Received method of

the ERC721 receiver to reenter the method liquidationERC721() .

Recommendation

We recommend applying OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the aforementioned

functions to prevent reentrancy attack.

Alleviation

The team heeded the recommendation and resolved the finding in commit 003de864bf36010729cf1ee887ba4047b74f8d88.

POO-02 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664257966228
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/security/ReentrancyGuard.sol
https://github.com/para-space/paraspace-core/commit/003de864bf36010729cf1ee887ba4047b74f8d88

PRO-01 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization

/ Privilege
Major

contracts/protocol/configuration/ACLManager.sol: 40~43;

contracts/protocol/configuration/PoolAddressesProvider.s

ol: 54~57, 68~71, 79~82, 101, 113~116, 134~137, 150, 162, 1

74~177, 216~219, 227, 234~240; contracts/protocol/configu

ration/PoolAddressesProviderRegistry.sol: 46~50, 72~75;

contracts/protocol/configuration/PriceOracleSentinel.sol:

91~93, 100~102; contracts/protocol/pool/Pool.sol: 835~843

, 866~870, 876~879, 889~892, 902~905, 916~919, 929~932,

993~997, 1052~1056; contracts/protocol/pool/PoolConfigur

ator.sol: 84~86, 94, 100~102, 107~109, 114~116, 121~124, 1

40~145, 192~196, 215~218, 234~237, 248~251, 261~264, 27

4~277, 292~295, 313~316, 327~330, 341~344, 359~362, 377

~380, 396, 407~410

Acknowledged

Description

In the contract Pool , the role onlyPoolAdmin has authority over the following functions:

function rescueTokens(), to transfer any ERC20 tokens in the contract to any to address.

Any compromise to the onlyPoolAdmin account may allow a hacker to take advantage of this authority.

In the contract Pool , the role onlyPoolConfigurator has authority over the following functions:

function initReserve(), to initialize a reserve, activate it, assign an NToken / PToken and debt tokens and an interest

rate strategy.

function dropReserve(), to drop a reserve.

function setReserveInterestRateStrategyAddress(), to update the address of the interest rate strategy contract.

function setReserveAuctionStrategyAddress(), to update the address of the auction strategy contract.

function setReserveDynamicConfigsStrategyAddress(), to update the address of the dynamic configs strategy

contract.

function setConfiguration(), to set the configuration bitmap of the reserve as a whole.

function setAuctionConfiguration(), to set the auction configuration bitmap of the reserve as a whole.

function setMaxAtomicTokensAllowed(), to set the maximum allowed atomic tokens per user.

Any compromise to the onlyPoolConfigurator account may allow a hacker to take advantage of this authority.

In the contract ACLManager , the role DEFAULT_ADMIN_ROLE has authority over the following functions:

PRO-01 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664435078586

function setRoleAdmin(), to set the role as admin of a specific role.

Any compromise to the DEFAULT_ADMIN_ROLE account may allow a hacker to take advantage of this authority.

In the contract PoolAddressesProvider , the role Owner has authority over the following functions:

function setMarketId(), to associate an id with a specific PoolAddressesProvider.

function setAddress(), to set an address for an id replacing the address saved in the addresses map.

function setAddressAsProxy(), to update the implementation of a proxy registered with certain id . If there is no

proxy registered, it will instantiate one and set as implementation the newImplementationAddress .

function setPoolImpl(), to update the implementation of the Pool or creates a proxy setting for the new pool

implementation when the function is called for the first time.

function setPriceOracle(), to update the address of the price oracle.

function setACLManager(), to update the address of the ACL manager.

function setACLAdmin(), to update the address of the ACL admin.

function setPriceOracleSentinel(), to update the address of the price oracle sentinel.

function setPoolDataProvider(), to update the address of the data provider.

function setWETH(), to update the address of the WETH.

function setMarketplace(),to update the info of the marketplace.

Any compromise to the Owner account may allow a hacker to take advantage of this authority.

In the contract PoolAddressesProviderRegistry , the role Owner has authority over the following functions:

function registerAddressesProvider(), to register an addresses provider.

function unregisterAddressesProvider(), to remove an addresses provider from the list of registered addresses

providers.

Any compromise to the Owner account may allow a hacker to take advantage of this authority.

In the contract PriceOracleSentinel , the role onlyPoolAdmin has authority over the following functions:

function setSequencerOracle(), to update the address of the sequencer oracle.

Any compromise to the onlyPoolAdmin account may allow a hacker to take advantage of this authority.

In the contract PriceOracleSentinel , the role onlyRiskOrPoolAdmins has authority over the following functions:

function setGracePeriod(), to update the duration of the grace period.

Any compromise to the onlyRiskOrPoolAdmins account may allow a hacker to take advantage of this authority.

In the contract PoolConfigurator , the role onlyPoolAdmin has authority over the following functions:

function dropReserve(), to drop a reserve entirely.

PRO-01 PARASPACE - NFT MONEY MARKET

function updatePToken(), to update the PToken implementation for the reserve.

function updateStableDebtToken(), to update the stable debt token implementation for the reserve.

function updateVariableDebtToken(), to update the variable debt token implementation for the asset.

function setReserveActive(), to activate or deactivate a reserve.

Any compromise to the onlyPoolAdmin account may allow a hacker to take advantage of this authority.

In the contract PoolConfigurator , the role onlyRiskOrPoolAdmins has authority over the following functions:

function setReserveBorrowing(), to configure borrowing on a reserve.

function configureReserveAsCollateral(), to configure the reserve collateralization parameters.

function configureReserveAsAuctionCollateral(), to configure the reserve collateralization parameters.

function setReserveStableRateBorrowing(), to enable or disable stable rate borrowing on a reserve.

function setReserveFreeze(), to freeze or unfreeze a reserve. A frozen reserve doesn't allow any new supply, borrow

or rate swap but allows repayments, liquidations, rate rebalances, and withdrawals.

function setReserveFactor(), to update the reserve factor of a reserve.

function setSiloedBorrowing(), to set siloed borrowing for an asset.

function setBorrowCap(), to update the borrow cap of a reserve.

function setSupplyCap(), to update the supply cap of a reserve.

function setLiquidationProtocolFee(), to update the liquidation protocol fee of reserve.

function setReserveInterestRateStrategyAddress(), to set the interest rate strategy of a reserve.

function setReserveDynamicConfigsStrategyAddress(), to set the dynamic configs strategy of a reserve.

function setMaxAtomicTokensAllowed(), to set the maximum allowed atomic tokens per user.

Any compromise to the onlyRiskOrPoolAdmins account may allow a hacker to take advantage of this authority.

In the contract PoolConfigurator , the role onlyEmergencyOrPoolAdmin has authority over the following functions:

function setReservePause(), to pause a reserve. A paused reserve does not allow any interaction (supply, borrow,

repay,

swap interest rate, liquidate, NToken/PToken transfers).

Any compromise to the onlyEmergencyOrPoolAdmin account may allow a hacker to take advantage of this authority.

In the contract PoolConfigurator , the role onlyEmergencyAdmin has authority over the following functions:

function setPoolPause(), to pause or unpause all the protocol reserves. In the paused state all the protocol

interactions are suspended.

Any compromise to the onlyEmergencyAdmin account may allow a hacker to take advantage of this authority.

In the contract PoolConfigurator , the role onlyAssetListingOrPoolAdmins has authority over the following functions:

PRO-01 PARASPACE - NFT MONEY MARKET

function initReserves(), to initialize multiple reserves.

Any compromise to the onlyAssetListingOrPoolAdmins account may allow a hacker to take advantage of this authority.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multi-signature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different level in terms of

short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement;

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles;

OR

Remove the risky functionality.

PRO-01 PARASPACE - NFT MONEY MARKET

Noted: Recommend considering the long-term solution or the permanent solution. The project team shall make a decision

based on the current state of their project, timeline, and project resources.

Alleviation

ParaSpace team acknowledged this finding.

PRO-01 PARASPACE - NFT MONEY MARKET

PRO-02 UNUSED RETURN VALUE

Category Severity Location Status

Volatile

Code
Minor

contracts/protocol/libraries/logic/BorrowLogic.sol: 290; contracts/proto

col/libraries/logic/LiquidationLogic.sol: 651; contracts/protocol/librarie

s/logic/MarketplaceLogic.sol: 80~88, 134~141, 200, 201; contracts/pro

tocol/pool/Pool.sol: 353~371; contracts/protocol/tokenization/NToken.s

ol: 205~209; contracts/protocol/tokenization/NTokenUniswapV3.sol: 1

07~109; contracts/protocol/tokenization/base/MintableIncentivizedER

C721.sol: 614~633

Acknowledged

Description

The return value of an external call is not stored in a local or state variable.

290 stableDebtToken.burn(user, stableDebt);

651 INToken(vars.collateralXToken).burn(params.user, msg.sender, tokenIds);

80 Address.functionDelegateCall(

81 params.marketplace.adapter,

82 abi.encodeWithSelector(

83 IMarketplace.matchAskWithTakerBid.selector,

84 params.marketplace.marketplace,

85 params.payload,

86 priceEth

87)

88);

134 Address.functionDelegateCall(

135 params.marketplace.adapter,

136 abi.encodeWithSelector(

137 IMarketplace.matchBidWithTakerAsk.selector,

138 params.marketplace.marketplace,

139 params.payload

140)

141);

200 IERC20(token).approve(params.marketplace.operator, 0);

PRO-02 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664429488372

201 IERC20(token).approve(params.marketplace.operator, price);

353 MarketplaceLogic.executeBuyWithCredit(

354 _reserves,

355 _reservesList,

356 _usersConfig[onBehalfOf],

357 DataTypes.ExecuteMarketplaceParams({

358 marketplaceId: marketplaceId,

359 payload: payload,

360 credit: credit,

361 ethLeft: msg.value,

362 marketplace: marketplace,

363 orderInfo: orderInfo,

364 WETH: WETH,

365 referralCode: referralCode,

366 maxStableRateBorrowSizePercent: _maxStableRateBorrowSizePercent,

367 reservesCount: _reservesCount,

368 oracle: ADDRESSES_PROVIDER.getPriceOracle(),

369 priceOracleSentinel: ADDRESSES_PROVIDER.getPriceOracleSentinel()

370 })

371);

205 Address.functionCall(

206 airdropContract,

207 airdropParams,

208 Errors.CALL_AIRDROP_METHOD_FAILED

209);

107 INonfungiblePositionManager(_underlyingAsset).decreaseLiquidity(

108 params

109);

PRO-02 PARASPACE - NFT MONEY MARKET

614 try

615 IERC721Receiver(to).onERC721Received(

616 _msgSender(),

617 from,

618 tokenId,

619 _data

620)

621 returns (bytes4 retval) {

622 return retval == IERC721Receiver.onERC721Received.selector;

623 } catch (bytes memory reason) {

624 if (reason.length == 0) {

625 revert(

626 "ERC721: transfer to non ERC721Receiver implementer"

627);

628 } else {

629 assembly {

630 revert(add(32, reason), mload(reason))

631 }

632 }

633 }

Recommendation

We recommend checking or using the return values of all external function calls.

Alleviation

ParaSpace team acknowledged this finding.

PRO-02 PARASPACE - NFT MONEY MARKET

PRO-03 initialize() IS UNPROTECTED

Category Severity Location Status

Volatile

Code
Minor

contracts/protocol/pool/Pool.sol: 100~103; contracts/protocol/tokeniz

ation/NToken.sol: 61~70
Acknowledged

Description

The function initialize() is public and can be called by anyone as long as the contract is deployed.

Recommendation

We recommend adding a _disableInitializers() function similar to Openzeppelin's or using constructor()

initializer {} .

 /// @custom:oz-upgrades-unsafe-allow constructor

 constructor() initializer {}

This will prevent the calling of initialize() directly on the implementation contract. But the proxy will still be able to

initialize() its storage variables.

Alleviation

ParaSpace team acknowledged this finding.

PRO-03 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664432757265

PRT-01 CHECK-EFFECTS-INTERACT PATTERN NOT
IMPLEMENTED

Category Severity Location Status

Volatile

Code
Medium

contracts/protocol/configuration/PoolAddressesProvider.sol (bas

e): 85, 86, 102, 103, 118~120, 121, 271, 272, 278, 305~308; co

ntracts/protocol/libraries/configuration/UserConfiguration.sol (ba

se): 39, 41, 64, 66; contracts/protocol/libraries/logic/BorrowLogi

c.sol (base): 99~108, 110~118, 122, 125~130, 203~209, 211~2

17, 220~225, 290, 292~301, 303, 341~347, 349~356, 358~364,

366~375, 378; contracts/protocol/libraries/logic/LiquidationLogic.

sol (base): 199, 201~206, 209, 211, 216~220, 226, 387~396, 40

1~404, 425, 426~431, 441, 443, 447, 463, 495, 496~501, 504~5

09, 525, 545~549, 586~590, 615~621, 625~633, 635~642; contr

acts/protocol/libraries/logic/ReserveLogic.sol (base): 105, 106, 2

07, 208, 209, 279~282, 309~311, 324~326, 331; contracts/proto

col/tokenization/base/MintableIncentivizedERC721.sol (base): 5

14~518, 520~524, 610, 613, 614

Partially Resolved

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another untrusted contract

before resolving any effects. If the attacker can control the untrusted contract, they can make a recursive call back to the

original function, repeating interactions that would have otherwise not run after the external call resolved the effects.

PoolAddressesProvider.sol

External call(s)

85 address oldImplementationAddress = _getProxyImplementation(id);

This function call executes the following external call(s).

In PoolAddressesProvider._getProxyImplementation ,

InitializableImmutableAdminUpgradeabilityProxy(payableProxyAddress).implementation()

86 _updateImpl(id, newImplementationAddress);

PRT-01 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663002835020

This function call executes the following external call(s).

In PoolAddressesProvider._updateImpl ,

proxy.initialize(newAddress,params)

In PoolAddressesProvider._updateImpl ,

proxy.upgradeToAndCall(newAddress,params)

State variables written after the call(s)

86 _updateImpl(id, newImplementationAddress);

This function call executes the following assignment(s).

In PoolAddressesProvider._updateImpl ,

_addresses[id] = proxyAddress = address(proxy)

PoolAddressesProvider.sol

External call(s)

102 address oldPoolImpl = _getProxyImplementation(POOL);

This function call executes the following external call(s).

In PoolAddressesProvider._getProxyImplementation ,

InitializableImmutableAdminUpgradeabilityProxy(payableProxyAddress).implementation()

103 _updateImpl(POOL, newPoolImpl);

This function call executes the following external call(s).

In PoolAddressesProvider._updateImpl ,

proxy.initialize(newAddress,params)

In PoolAddressesProvider._updateImpl ,

proxy.upgradeToAndCall(newAddress,params)

PRT-01 PARASPACE - NFT MONEY MARKET

State variables written after the call(s)

103 _updateImpl(POOL, newPoolImpl);

This function call executes the following assignment(s).

In PoolAddressesProvider._updateImpl ,

_addresses[id] = proxyAddress = address(proxy)

PoolAddressesProvider.sol

External call(s)

118 address oldPoolConfiguratorImpl = _getProxyImplementation(

119 POOL_CONFIGURATOR

120);

This function call executes the following external call(s).

In PoolAddressesProvider._getProxyImplementation ,

InitializableImmutableAdminUpgradeabilityProxy(payableProxyAddress).implementation()

121 _updateImpl(POOL_CONFIGURATOR, newPoolConfiguratorImpl);

This function call executes the following external call(s).

In PoolAddressesProvider._updateImpl ,

proxy.initialize(newAddress,params)

In PoolAddressesProvider._updateImpl ,

proxy.upgradeToAndCall(newAddress,params)

State variables written after the call(s)

121 _updateImpl(POOL_CONFIGURATOR, newPoolConfiguratorImpl);

This function call executes the following assignment(s).

PRT-01 PARASPACE - NFT MONEY MARKET

In PoolAddressesProvider._updateImpl ,

_addresses[id] = proxyAddress = address(proxy)

BorrowLogic.sol

External call(s)

99 (

100 isFirstBorrowing,

101 reserveCache.nextTotalStableDebt,

102 reserveCache.nextAvgStableBorrowRate

103) = IStableDebtToken(reserveCache.stableDebtTokenAddress).mint(

104 params.user,

105 params.onBehalfOf,

106 params.amount,

107 currentStableRate

108);

110 (

111 isFirstBorrowing,

112 reserveCache.nextScaledVariableDebt

113) = IVariableDebtToken(reserveCache.variableDebtTokenAddress).mint(

114 params.user,

115 params.onBehalfOf,

116 params.amount,

117 reserveCache.nextVariableBorrowIndex

118);

State variables written after the call(s)

125 reserve.updateInterestRates(

126 reserveCache,

127 params.asset,

128 0,

129 params.releaseUnderlying ? params.amount : 0

130);

This function call executes the following assignment(s).

In ReserveLogic.updateInterestRates ,

reserve.currentLiquidityRate = vars.nextLiquidityRate.toUint128()

PRT-01 PARASPACE - NFT MONEY MARKET

In ReserveLogic.updateInterestRates ,

reserve.currentStableBorrowRate = vars.nextStableRate.toUint128()

In ReserveLogic.updateInterestRates ,

reserve.currentVariableBorrowRate = vars.nextVariableRate.toUint128()

125 reserve.updateInterestRates(

126 reserveCache,

127 params.asset,

128 0,

129 params.releaseUnderlying ? params.amount : 0

130);

This function call executes the following assignment(s).

In ReserveLogic.updateInterestRates ,

reserve.currentLiquidityRate = vars.nextLiquidityRate.toUint128()

In ReserveLogic.updateInterestRates ,

reserve.currentStableBorrowRate = vars.nextStableRate.toUint128()

In ReserveLogic.updateInterestRates ,

reserve.currentVariableBorrowRate = vars.nextVariableRate.toUint128()

122 userConfig.setBorrowing(reserve.id, true);

This function call executes the following assignment(s).

In UserConfiguration.setBorrowing ,

self.data |= bit

In UserConfiguration.setBorrowing ,

self.data &= ~ bit

BorrowLogic.sol

External call(s)

PRT-01 PARASPACE - NFT MONEY MARKET

203 (

204 reserveCache.nextTotalStableDebt,

205 reserveCache.nextAvgStableBorrowRate

206) = IStableDebtToken(reserveCache.stableDebtTokenAddress).burn(

207 params.onBehalfOf,

208 paybackAmount

209);

211 reserveCache.nextScaledVariableDebt = IVariableDebtToken(

212 reserveCache.variableDebtTokenAddress

213).burn(

214 params.onBehalfOf,

215 paybackAmount,

216 reserveCache.nextVariableBorrowIndex

217);

State variables written after the call(s)

220 reserve.updateInterestRates(

221 reserveCache,

222 params.asset,

223 params.usePTokens ? 0 : paybackAmount,

224 0

225);

This function call executes the following assignment(s).

In ReserveLogic.updateInterestRates ,

reserve.currentLiquidityRate = vars.nextLiquidityRate.toUint128()

In ReserveLogic.updateInterestRates ,

reserve.currentStableBorrowRate = vars.nextStableRate.toUint128()

In ReserveLogic.updateInterestRates ,

reserve.currentVariableBorrowRate = vars.nextVariableRate.toUint128()

220 reserve.updateInterestRates(

221 reserveCache,

222 params.asset,

223 params.usePTokens ? 0 : paybackAmount,

224 0

225);

PRT-01 PARASPACE - NFT MONEY MARKET

This function call executes the following assignment(s).

In ReserveLogic.updateInterestRates ,

reserve.currentLiquidityRate = vars.nextLiquidityRate.toUint128()

In ReserveLogic.updateInterestRates ,

reserve.currentStableBorrowRate = vars.nextStableRate.toUint128()

In ReserveLogic.updateInterestRates ,

reserve.currentVariableBorrowRate = vars.nextVariableRate.toUint128()

BorrowLogic.sol

External call(s)

290 stableDebtToken.burn(user, stableDebt);

292 (

293 ,

294 reserveCache.nextTotalStableDebt,

295 reserveCache.nextAvgStableBorrowRate

296) = stableDebtToken.mint(

297 user,

298 user,

299 stableDebt,

300 reserve.currentStableBorrowRate

301);

State variables written after the call(s)

303 reserve.updateInterestRates(reserveCache, asset, 0, 0);

This function call executes the following assignment(s).

In ReserveLogic.updateInterestRates ,

reserve.currentLiquidityRate = vars.nextLiquidityRate.toUint128()

In ReserveLogic.updateInterestRates ,

reserve.currentStableBorrowRate = vars.nextStableRate.toUint128()

PRT-01 PARASPACE - NFT MONEY MARKET

In ReserveLogic.updateInterestRates ,

reserve.currentVariableBorrowRate = vars.nextVariableRate.toUint128()

BorrowLogic.sol

External call(s)

341 (

342 reserveCache.nextTotalStableDebt,

343 reserveCache.nextAvgStableBorrowRate

344) = IStableDebtToken(reserveCache.stableDebtTokenAddress).burn(

345 msg.sender,

346 stableDebt

347);

349 (, reserveCache.nextScaledVariableDebt) = IVariableDebtToken(

350 reserveCache.variableDebtTokenAddress

351).mint(

352 msg.sender,

353 msg.sender,

354 stableDebt,

355 reserveCache.nextVariableBorrowIndex

356);

358 reserveCache.nextScaledVariableDebt = IVariableDebtToken(

359 reserveCache.variableDebtTokenAddress

360).burn(

361 msg.sender,

362 variableDebt,

363 reserveCache.nextVariableBorrowIndex

364);

366 (

367 ,

368 reserveCache.nextTotalStableDebt,

369 reserveCache.nextAvgStableBorrowRate

370) = IStableDebtToken(reserveCache.stableDebtTokenAddress).mint(

371 msg.sender,

372 msg.sender,

373 variableDebt,

374 reserve.currentStableBorrowRate

375);

PRT-01 PARASPACE - NFT MONEY MARKET

State variables written after the call(s)

378 reserve.updateInterestRates(reserveCache, asset, 0, 0);

This function call executes the following assignment(s).

In ReserveLogic.updateInterestRates ,

reserve.currentLiquidityRate = vars.nextLiquidityRate.toUint128()

In ReserveLogic.updateInterestRates ,

reserve.currentStableBorrowRate = vars.nextStableRate.toUint128()

In ReserveLogic.updateInterestRates ,

reserve.currentVariableBorrowRate = vars.nextVariableRate.toUint128()

LiquidationLogic.sol

External call(s)

199 _burnDebtTokens(params, vars);

This function call executes the following external call(s).

In LiquidationLogic._burnDebtTokens ,

vars.debtReserveCache.nextScaledVariableDebt =

IVariableDebtToken(vars.debtReserveCache.variableDebtTokenAddress).burn(params.user,vars.a

ctualDebtToLiquidate,vars.debtReserveCache.nextVariableBorrowIndex)

In LiquidationLogic._burnDebtTokens ,

vars.debtReserveCache.nextScaledVariableDebt =

IVariableDebtToken(vars.debtReserveCache.variableDebtTokenAddress).burn(params.user,vars.u

serVariableDebt,vars.debtReserveCache.nextVariableBorrowIndex)

In LiquidationLogic._burnDebtTokens ,

(vars.debtReserveCache.nextTotalStableDebt,vars.debtReserveCache.nextAvgStableBorrowRate)

=

IStableDebtToken(vars.debtReserveCache.stableDebtTokenAddress).burn(params.user,vars.actua

lDebtToLiquidate - vars.userVariableDebt)

PRT-01 PARASPACE - NFT MONEY MARKET

State variables written after the call(s)

201 debtReserve.updateInterestRates(

202 vars.debtReserveCache,

203 params.liquidationAsset,

204 vars.actualDebtToLiquidate,

205 0

206);

This function call executes the following assignment(s).

In ReserveLogic.updateInterestRates ,

reserve.currentLiquidityRate = vars.nextLiquidityRate.toUint128()

In ReserveLogic.updateInterestRates ,

reserve.currentStableBorrowRate = vars.nextStableRate.toUint128()

In ReserveLogic.updateInterestRates ,

reserve.currentVariableBorrowRate = vars.nextVariableRate.toUint128()

External call(s)

199 _burnDebtTokens(params, vars);

This function call executes the following external call(s).

In LiquidationLogic._burnDebtTokens ,

vars.debtReserveCache.nextScaledVariableDebt =

IVariableDebtToken(vars.debtReserveCache.variableDebtTokenAddress).burn(params.user,vars.a

ctualDebtToLiquidate,vars.debtReserveCache.nextVariableBorrowIndex)

In LiquidationLogic._burnDebtTokens ,

vars.debtReserveCache.nextScaledVariableDebt =

IVariableDebtToken(vars.debtReserveCache.variableDebtTokenAddress).burn(params.user,vars.u

serVariableDebt,vars.debtReserveCache.nextVariableBorrowIndex)

In LiquidationLogic._burnDebtTokens ,

(vars.debtReserveCache.nextTotalStableDebt,vars.debtReserveCache.nextAvgStableBorrowRate)

=

PRT-01 PARASPACE - NFT MONEY MARKET

IStableDebtToken(vars.debtReserveCache.stableDebtTokenAddress).burn(params.user,vars.actua

lDebtToLiquidate - vars.userVariableDebt)

209 _liquidatePTokens(usersConfig, collateralReserve, params, vars);

This function call executes the following external call(s).

In LiquidationLogic._liquidatePTokens ,

IPToken(vars.collateralXToken).transferOnLiquidation(params.user,msg.sender,vars.actualCo

llateralToLiquidate)

211 _burnCollateralPTokens(collateralReserve, params, vars);

This function call executes the following external call(s).

In LiquidationLogic._burnCollateralPTokens ,

IPToken(vars.collateralXToken).burn(params.user,msg.sender,vars.actualCollateralToLiquida

te,collateralReserveCache.nextLiquidityIndex)

216 IPToken(vars.collateralXToken).transferOnLiquidation(

217 params.user,

218 IPToken(vars.collateralXToken).RESERVE_TREASURY_ADDRESS(),

219 vars.liquidationProtocolFeeAmount

220);

State variables written after the call(s)

226 userConfig.setUsingAsCollateral(collateralReserve.id, false);

This function call executes the following assignment(s).

In UserConfiguration.setUsingAsCollateral ,

self.data |= bit

In UserConfiguration.setUsingAsCollateral ,

self.data &= ~ bit

PRT-01 PARASPACE - NFT MONEY MARKET

LiquidationLogic.sol

External call(s)

387 SupplyLogic.executeSupply(

388 reservesData,

389 userConfig,

390 DataTypes.ExecuteSupplyParams({

391 asset: params.liquidationAsset,

392 amount: debtCanBeCovered - vars.actualDebtToLiquidate,

393 onBehalfOf: params.user,

394 referralCode: 0

395 })

396);

State variables written after the call(s)

401 userConfig.setUsingAsCollateral(

402 liquidationAssetReserveId,

403 true

404);

This function call executes the following assignment(s).

In UserConfiguration.setUsingAsCollateral ,

self.data |= bit

In UserConfiguration.setUsingAsCollateral ,

self.data &= ~ bit

MintableIncentivizedERC721.sol

External call(s)

610 MintableIncentivizedERC721._transfer(from, to, tokenId);

This function call executes the following external call(s).

In MintableIncentivizedERC721._transfer ,

rewardControllerLocal.handleAction(from,oldTotalSupply,oldSenderBalance)

PRT-01 PARASPACE - NFT MONEY MARKET

In MintableIncentivizedERC721._transfer ,

rewardControllerLocal.handleAction(to,oldTotalSupply,oldRecipientBalance)

State variables written after the call(s)

613 _userState[from].collaterizedBalance -= 1;

614 _userState[to].collaterizedBalance += 1;

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts.

Alleviation

The team updated the code in commits 87b1ea10496ad4947cb65d4a515313c8b7aa7474 and

7cc940ce18b0a45774948f6d4e86735754d23343 .

PRT-01 PARASPACE - NFT MONEY MARKET

https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern

SLB-01 REDUNDANT else CLAUSE

Category Severity Location Status

Logical Issue Minor contracts/protocol/libraries/logic/SupplyLogic.sol (base): 467~470 Resolved

Description

Refer to the SupplyLogic.executeUseReserveAsCollateral() method is used to set whether the ERC20 asset can be

collateralized, and there is no similar statement for the ERC721 asset, we think the ERC721 asset the "else" statement is

redundant.

Recommendation

We recommend removing the redundant else clause.

Alleviation

The team heeded our advice and resolved this issue in commit aec6ed0ddda43ad3cfbd359c9ffd0d82f45ed6d7 .

SLB-01 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663644568267

TOK-01 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile

Code
Minor

contracts/protocol/tokenization/NToken.sol: 75, 76; contracts/protocol/token

ization/PToken.sol: 75, 76
Resolved

Description

Addresses should be checked before assignment or external call to make sure they are not zero addresses.

75 (bool success,) = newImplementation.delegatecall(data);

newImplementation is not zero-checked before being used.

75 _treasury = treasury;

treasury is not zero-checked before being used.

76 _underlyingAsset = underlyingAsset;

underlyingAsset is not zero-checked before being used.

75 _treasury = treasury;

treasury is not zero-checked before being used.

Recommendation

We advise adding a zero-check for the passed-in address value to prevent unexpected errors.

Alleviation

The team heeded our advice and resolved this issue in commit 355402a64a9c857d9c13b46d16bf813a3186fd56 .

TOK-01 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664433727596

VLB-01 REDUNDANT CODE

Category Severity Location Status

Volatile

Code
Minor

contracts/protocol/libraries/logic/ValidationLogic.sol (base): 111~119, 13

5~140
Resolved

Description

The require statement is duplicated in validateSupplyBase() with the related statements in validateSupplyERC20() and

validateSupplyERC721() .

Recommendation

Consider deleting it if it is useless.

Alleviation

The team heeded our advice and resolved this issue in commit aec6ed0ddda43ad3cfbd359c9ffd0d82f45ed6d7 .

VLB-01 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663644583464

PARASPACE-02 POTENTIAL RISKS OF POOL ESTABLISHMENT

Category Severity Location Status

Control Flow Informational Acknowledged

Description

If multiple pools are deployed, there may be a risk of code reentrancy. The hacker can call the withdrawERC721() method

of one of the Pools and use the hook _checkOnERC721Received method of the ERC721 receiver to reenter the

methods(such as the method liquidationERC721()) of other Pools. Please check if multiple Pools are allowed to be

deployed at the same time.

Recommendation

We recommend the client ensuring the logical correctness.

Alleviation

The team acknowledged this issue and they replied with the following:

"If we deploy multiple pools then basically every pool proxy contract holds its own storage I guess."

PARASPACE-02 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663645243658

POO-03 DISCUSSION ON BORROW WITH CREDIT

Category Severity Location Status

Control Flow Informational contracts/protocol/pool/Pool.sol: 340, 375, 425, 462 Resolved

Description

424 // Pool.sol

425 function acceptBidWithCredit(

426 bytes32 marketplaceId,

427 bytes calldata payload,

428 DataTypes.Credit calldata credit,

429 address onBehalfOf,

430 uint16 referralCode

431) external virtual override nonReentrant {

Currently, the functions buyWithCredit() , batchBuyWithCredit() , acceptBidWithCredit() , and

batchAcceptBidWithCredit() can be called by anyone and there is no authorization between caller and onBehalfOf .

In our opinion, these functions would be invoked in relevant gateway contracts.

The functions buyWithCredit() and batchBuyWithCredit() could be invoked in WETHGateway.sol .

The functions acceptBidWithCredit() and batchAcceptBidWithCredit() could be invoked in

WPunkGateway.sol .

 // WPunkGateway.sol

 function acceptBidWithCredit(

 bytes32 marketplaceId,

 bytes calldata payload,

 DataTypes.Credit calldata credit,

 uint256[] calldata punkIndexes,

 uint16 referralCode

) external nonReentrant {

 Pool.acceptBidWithCredit(

 marketplaceId,

 payload,

 credit,

 msg.sender,

 referralCode

);

 }

POO-03 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664261417699

Recommendation

We recommend adding caller validation to the four methods.

Alleviation

[ParaSpace] : We use msg.sender 's funds but all validation is done on onBehalfOf , which means that msg.sender

can pay for this purchase for the others, we think it's fine.

POO-03 PARASPACE - NFT MONEY MARKET

PRO-05 INCORRECT COMMENTS

Category Severity Location Status

Inconsistency Informational
contracts/protocol/libraries/logic/BorrowLogic.sol: 56~57; c

ontracts/protocol/tokenization/NToken.sol: 23~27
Acknowledged

Description

The title comment for NToken.sol is for PToken , not NToken .

The comments for executeBorrow() and executeRepay() isolated positions are mentioned, however, there are no

isolated positions in the code.

Recommendation

We recommend changing the title comment to reflect NToken .

We recommend removing references to isolated positions.

Alleviation

ParaSpace team acknowledged this finding.

PRO-05 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1663702467316

OPTIMIZATIONS PARASPACE - NFT MONEY MARKET

ID Title Category Severity Status

PRO-04 Unused State Variable Gas Optimization Optimization Acknowledged

OPTIMIZATIONS PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664417204933

PRO-04 UNUSED STATE VARIABLE

Category Severity Location Status

Gas

Optimization
Optimization

contracts/protocol/libraries/configuration/ReserveConfigurati

on.sol: 22, 28, 29, 40, 48, 49, 50, 60, 61, 62; contracts/proto

col/libraries/logic/LiquidationLogic.sol: 82; contracts/protoco

l/libraries/paraspace-upgradeability/VersionedInitializable.so

l: 78; contracts/protocol/tokenization/base/MintableIncentiviz

edERC721.sol: 95

Acknowledged

Description

One or more state variables are never used in the codebase.

Variable BORROWABLE_IN_ISOLATION_MASK in ReserveConfiguration is never used in ReserveConfiguration .

22 uint256 internal constant BORROWABLE_IN_ISOLATION_MASK =

0xFFDFFFFFFFFFFFFFFF; // prettier-

ignore

12 library ReserveConfiguration {

Variable UNBACKED_MINT_CAP_MASK in ReserveConfiguration is never used in ReserveConfiguration .

28 uint256 internal constant UNBACKED_MINT_CAP_MASK =

0xFFFFFFFFFFF000000000FF; // prettier-

ignore

12 library ReserveConfiguration {

Variable DEBT_CEILING_MASK in ReserveConfiguration is never used in ReserveConfiguration .

29 uint256 internal constant DEBT_CEILING_MASK =

0xF0000000000FFF; // prettier-

ignore

12 library ReserveConfiguration {

Variable BORROWABLE_IN_ISOLATION_START_BIT_POSITION in ReserveConfiguration is never used in

ReserveConfiguration .

PRO-04 PARASPACE - NFT MONEY MARKET

https://acc.audit.certikpowered.info/project/8cc3d270-298b-11ed-9a7d-b7c8afc19e5d/report?fid=1664417204933

40 uint256 internal constant BORROWABLE_IN_ISOLATION_START_BIT_POSITION = 61;

12 library ReserveConfiguration {

Variable IS_DYNAMIC_CONFIGS_START_BIT_POSITION in ReserveConfiguration is never used in ReserveConfiguration .

48 uint256 internal constant IS_DYNAMIC_CONFIGS_START_BIT_POSITION = 168;

12 library ReserveConfiguration {

Variable UNBACKED_MINT_CAP_START_BIT_POSITION in ReserveConfiguration is never used in ReserveConfiguration .

49 uint256 internal constant UNBACKED_MINT_CAP_START_BIT_POSITION = 176;

12 library ReserveConfiguration {

Variable DEBT_CEILING_START_BIT_POSITION in ReserveConfiguration is never used in ReserveConfiguration .

50 uint256 internal constant DEBT_CEILING_START_BIT_POSITION = 212;

12 library ReserveConfiguration {

Variable MAX_VALID_EMODE_CATEGORY in ReserveConfiguration is never used in ReserveConfiguration .

60 uint256 internal constant MAX_VALID_EMODE_CATEGORY = 255;

12 library ReserveConfiguration {

Variable MAX_VALID_UNBACKED_MINT_CAP in ReserveConfiguration is never used in ReserveConfiguration .

61 uint256 internal constant MAX_VALID_UNBACKED_MINT_CAP = 68719476735;

12 library ReserveConfiguration {

Variable MAX_VALID_DEBT_CEILING in ReserveConfiguration is never used in ReserveConfiguration .

62 uint256 internal constant MAX_VALID_DEBT_CEILING = 1099511627775;

PRO-04 PARASPACE - NFT MONEY MARKET

12 library ReserveConfiguration {

Variable BASE_CURRENCY_DECIMALS in LiquidationLogic is never used in LiquidationLogic .

82 uint256 private constant BASE_CURRENCY_DECIMALS = 18;

34 library LiquidationLogic {

Variable ______gap in VersionedInitializable is never used in ATokenDebtToken .

78 uint256[50] private ______gap;

14 contract ATokenDebtToken is RebasingDebtToken {

Variable _allowances in MintableIncentivizedERC721 is never used in NTokenMoonBirds .

95 mapping(address => mapping(address => uint256)) private _allowances;

27 contract NTokenMoonBirds is NToken, IMoonBirdBase {

Recommendation

We advise removing the unused variables.

Alleviation

ParaSpace team acknowledged this finding.

PRO-04 PARASPACE - NFT MONEY MARKET

FORMAL VERIFICATION PARASPACE - NFT MONEY MARKET

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied automated formal

verification (symbolic model checking) to prove that well-known functions in the smart contracts adhere to their expected

behavior.

Considered Functions And Scope

Verification of ERC-20 compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc20-balanceof-succeed-always Function balanceOf Always Succeeds

erc20-balanceof-correct-value Function balanceOf Returns the Correct Value

erc20-balanceof-change-state Function balanceOf Does Not Change the Contract's State

erc20-allowance-succeed-always Function allowance Always Succeeds

erc20-allowance-correct-value Function allowance Returns Correct Value

erc20-allowance-change-state Function allowance Does Not Change the Contract's State

erc20-approve-revert-zero Function approve Prevents Giving Approvals For the Zero Address

erc20-approve-succeed-normal Function approve Succeeds for Admissible Inputs

erc20-approve-correct-amount Function approve Updates the Approval Mapping Correctly

erc20-approve-change-state Function approve Has No Unexpected State Changes

erc20-approve-false
If Function approve Returns false , the Contract's State Has Not Been

Changed

FORMAL VERIFICATION PARASPACE - NFT MONEY MARKET

Property Name Title

erc20-approve-never-return-false Function approve Never Returns false

erc20-transferfrom-correct-amount
Function transferFrom Transfers the Correct Amount in Non-self

Transfers

erc20-transferfrom-correct-amount-self Function transferFrom Performs Self Transfers Correctly

erc20-transfer-revert-zero Function transfer Prevents Transfers to the Zero Address

erc20-transfer-succeed-normal Function transfer Succeeds on Admissible Non-self Transfers

erc20-transfer-succeed-self Function transfer Succeeds on Admissible Self Transfers

erc20-transfer-correct-amount Function transfer Transfers the Correct Amount in Non-self Transfers

erc20-transfer-correct-amount-self Function transfer Transfers the Correct Amount in Self Transfers

erc20-transfer-change-state Function transfer Has No Unexpected State Changes

erc20-transfer-exceed-balance
Function transfer Fails if Requested Amount Exceeds Available

Balance

erc20-transfer-recipient-overflow Function transfer Prevents Overflows in the Recipient's Balance

erc20-transfer-false
If Function transfer Returns false , the Contract State Has Not Been

Changed

erc20-transfer-never-return-false Function transfer Never Returns false

erc20-transferfrom-revert-from-zero Function transferFrom Fails for Transfers From the Zero Address

erc20-transferfrom-revert-to-zero Function transferFrom Fails for Transfers To the Zero Address

erc20-transferfrom-succeed-normal Function transferFrom Succeeds on Admissible Non-self Transfers

erc20-transferfrom-succeed-self Function transferFrom Succeeds on Admissible Self Transfers

erc20-transferfrom-correct-allowance Function transferFrom Updated the Allowance Correctly

erc20-transferfrom-fail-exceed-balance
Function transferFrom Fails if the Requested Amount Exceeds the

Available Balance

erc20-transferfrom-fail-exceed-allowance
Function transferFrom Fails if the Requested Amount Exceeds the

Available Allowance

erc20-transferfrom-fail-recipient-overflow Function transferFrom Prevents Overflows in the Recipient's Balance

FORMAL VERIFICATION PARASPACE - NFT MONEY MARKET

Property Name Title

erc20-transferfrom-false
If Function transferFrom Returns false , the Contract's State Has Not

Been Changed

erc20-transferfrom-never-return-false Function transferFrom Never Returns false

erc20-totalsupply-succeed-always Function totalSupply Always Succeeds

erc20-totalsupply-correct-value
Function totalSupply Returns the Value of the Corresponding State

Variable

erc20-totalsupply-change-state Function totalSupply Does Not Change the Contract's State

erc20-transferfrom-change-state Function transferFrom Has No Unexpected State Changes

Verification Results

In the remainder of this section, we list all contracts where model checking of at least one property was not successful. There

are several reasons why this could happen:

Model checking reports a counterexample that violates the property. Depending on the counterexample,this occurs if

The specification of the property is too generic and does not accurately capture the intended behavior of

the smart contract. In that case, the counterexample does not indicate a problem in the underlying smart

contract. We report such instances as being "inapplicable".

The property is applicable to the smart contract. In that case, the counterexample showcases a problem

in the smart contract and a correspond finding is reported separately in the Findings section of this

report. In the following tables, we report such instances as "invalid".
The distinction between spurious

and actual counterexamples is done manually by the auditors.

The model checking result is inconclusive. Such a result does not indicate a problem in the underlying smart

contract. An inconclusive result may occur if

The model checking engine fails to construct a proof. This can happen if the logical deductions

necessary are beyond the capabilities of the automated reasoning tool. It is a technical limitation of all

proof engines and cannot be avoided in general.

The model checking engine runs out of time or memory and did not produce a result. This can happen if

automatic abstraction techniques are ineffective or of the state space is too big.

Contract MintableERC20 (Source File contracts/mocks/tokens/MintableERC20.sol)

FORMAL VERIFICATION PARASPACE - NFT MONEY MARKET

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-succeed-normal True

erc20-transfer-succeed-self True

erc20-transfer-correct-amount True

erc20-transfer-correct-amount-self True

erc20-transfer-change-state True

erc20-transfer-exceed-balance True

erc20-transfer-recipient-overflow True

erc20-transfer-false True

erc20-transfer-never-return-false True

FORMAL VERIFICATION PARASPACE - NFT MONEY MARKET

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-correct-amount Inconclusive

erc20-transferfrom-correct-amount-self Inconclusive

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-succeed-self True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

erc20-transferfrom-change-state True

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION PARASPACE - NFT MONEY MARKET

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

Contract MockAToken (Source File contracts/mocks/tokens/MockAToken.sol)

FORMAL VERIFICATION PARASPACE - NFT MONEY MARKET

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-succeed-normal True

erc20-transfer-succeed-self True

erc20-transfer-correct-amount True

erc20-transfer-correct-amount-self True

erc20-transfer-change-state True

erc20-transfer-exceed-balance True

erc20-transfer-recipient-overflow True

erc20-transfer-false True

erc20-transfer-never-return-false True

FORMAL VERIFICATION PARASPACE - NFT MONEY MARKET

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-succeed-self True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

erc20-transferfrom-change-state True

erc20-transferfrom-correct-amount Inconclusive

erc20-transferfrom-correct-amount-self Inconclusive

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION PARASPACE - NFT MONEY MARKET

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

Contract stETH (Source File contracts/mocks/tokens/stETH.sol)

FORMAL VERIFICATION PARASPACE - NFT MONEY MARKET

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-succeed-normal True

erc20-transfer-succeed-self True

erc20-transfer-correct-amount True

erc20-transfer-correct-amount-self True

erc20-transfer-change-state True

erc20-transfer-exceed-balance True

erc20-transfer-recipient-overflow True

erc20-transfer-false True

erc20-transfer-never-return-false True

FORMAL VERIFICATION PARASPACE - NFT MONEY MARKET

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-succeed-self True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

erc20-transferfrom-change-state True

erc20-transferfrom-correct-amount Inconclusive

erc20-transferfrom-correct-amount-self Inconclusive

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION PARASPACE - NFT MONEY MARKET

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

Contract MintableDelegationERC20 (Source File
contracts/mocks/tokens/MintableDelegationERC20.sol)

FORMAL VERIFICATION PARASPACE - NFT MONEY MARKET

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-succeed-normal True

erc20-transfer-succeed-self True

erc20-transfer-correct-amount True

erc20-transfer-correct-amount-self True

erc20-transfer-change-state True

erc20-transfer-exceed-balance True

erc20-transfer-recipient-overflow True

erc20-transfer-false True

erc20-transfer-never-return-false True

FORMAL VERIFICATION PARASPACE - NFT MONEY MARKET

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-correct-amount-self Inconclusive

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-succeed-self True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

erc20-transferfrom-change-state True

erc20-transferfrom-correct-amount Inconclusive

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION PARASPACE - NFT MONEY MARKET

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

Contract ERC20 (Source File contracts/dependencies/openzeppelin/contracts/ERC20.sol)

FORMAL VERIFICATION PARASPACE - NFT MONEY MARKET

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-correct-amount True

erc20-transfer-succeed-normal True

erc20-transfer-succeed-self True

erc20-transfer-correct-amount-self True

erc20-transfer-change-state True

erc20-transfer-exceed-balance True

erc20-transfer-recipient-overflow True

erc20-transfer-false True

erc20-transfer-never-return-false True

FORMAL VERIFICATION PARASPACE - NFT MONEY MARKET

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-succeed-self True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

erc20-transferfrom-change-state True

erc20-transferfrom-correct-amount Inconclusive

erc20-transferfrom-correct-amount-self Inconclusive

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION PARASPACE - NFT MONEY MARKET

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

FORMAL VERIFICATION PARASPACE - NFT MONEY MARKET

APPENDIX PARASPACE - NFT MONEY MARKET

Finding Categories

Categories Description

Centralization

/ Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Control Flow
Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different

code, such as a constructor assignment imposing different require statements on the input variables

than a setter function.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX PARASPACE - NFT MONEY MARKET

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with

the Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL

WARRANTIES ARISING FROM COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE

FOREGOING, CERTIK MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE

ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE

USE THEREOF, WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE,

ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE

DISCLAIMER PARASPACE - NFT MONEY MARKET

FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY

KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE

COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS OR SERVICES, OPERATE

WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR

THAT ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME

NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER PARASPACE - NFT MONEY MARKET

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

ParaSpace - NFT Money Market Security Assessment CertiK Verified on Oct 25th, 2022 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

